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The problem (Rivest, Adleman, Dertouzos, 1978)

On Data Banks And Privacy Homomorphisms - 1978

... a system working with encrypted data can at most store or
retrieve data for the user; any more complicated operations
seem to require that the data be decrypted before being
operated on.

... it appears likely that there exist [...] Privacy
Homomorphisms.
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Privacy Homomorphisms

Find an encryption scheme S such that:

Let y = S .Enck(x). For any PPT function f mapping plaintexts to
plaintexts, find y ′ publicly such that S .Deck(y ′) = f (x).

Example: If S .plainspace is a ring, provide functionalities
Add, Mult such that

Add(Enc(x), Enc(y)) encrypts x + y

Mult(Enc(x), Enc(y)) encrypts x × y .

Disclaimer

Along with reasonable security properties!
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HE is non determinist

1. Homomorphic encryption must be non-determinist

The attacker could solve ring equations

x = k ⇔ (x 6= 0) ∧ (x2 = x + x + · · ·+ x︸ ︷︷ ︸
ktimes

)

1bis. Broccoli heuristics: If ciphertext spaces are distinguishable,
they should be somewhat separable.
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HE runs in worst-case complexity for decision algorithms

2. Logical conditions translate to homomorphic comparison
circuits.

Consider the equality circuit: Let a, b ∈ {0, 1}κ.

Eq(a, b) = 1⊕
κ∏

i=1

(ai ⊕ bi ⊕ 1) =

{
0 if a = b,
1 if a 6= b.
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Don’t allow easy CCA’s

3.– Decrypt Verifiable Computations Only If Possible
(Homomorphic encryption schemes are known to be vulnerable to
IND-CCA Key-Recovery attacks)

Francisco Vial-Prado Fully Homomorphic Encryption



Generic homomorphic encryption
Gentry’s blueprint
Second generation

Connections with other cryptographic problems

(implied by) Functional encryption

(provides reduction of) Secure Multiparty Computation

(compatible with) Identity/Attribute-Based Encryption

(brick of?) Indistinguishability Obfuscation

(first multi-hop?) Proxy Re-encryption
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Gentry’s solution

The Sophomore’s Dream

Let R be some ring and I be an ideal of R. Let m ∈ R/I . Let
Enc(m) := m + i where i ∈ I is sampled randomly.

Enc(m1) + Enc(m2) = m1 + m2 + i ′,
Enc(m1)× Enc(m2) = m1 ×m2 + i ′′.

Good game; now look for

Random efficient sampling from α + I for every α ∈ R/I

Secret decryption power: ideal annihilation procedure
α + xI 7→ α.

Connection to hard problems.
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Ideals + Lattices = Ideal Lattices

Gentry’s first FHE scheme

Specialized the latter construction using polynomial rings and two
sets of ideal lattices.

Secret and public keys are parallelepipeds in Rn, with large n, and
plaintexts/ciphertexts are polynomials in Z [X ]/(X n − 1).
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Lattices

More on lattices on yesterdays’ talk:
Engineering lattice-based crypto – Peter Schwabe

b1

b2

L = Z · b1 + Z · b2

B = {b1,b2} is called a
basis of L.
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Lattices

b1

b2

b′1

b′2

B = U · B′ for U ∈ GLn(Z).

In particular, for any base,

det(L) :=
√

det(B · Bt).
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b1

b2

P(B) :=

[
−1

2
,

1

2

)
· b1 +

[
−1

2
,

1

2

)
· b2

Vol(P) = det(L)
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x

mod B

∀x ∈ Rn x mod B := x − BbB−1 · xe

Francisco Vial-Prado Fully Homomorphic Encryption



Generic homomorphic encryption
Gentry’s blueprint
Second generation

Gentry’s scheme

A message m = (1, 0, 0, 0, 1, 1) is
encrypted by

c = mmod Bpk.

Then,

c = (1, 3, 0,−2, 0,−521159786514568)

is decrypted by

m = c mod Bsk.
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Gentry’s scheme

Concretely:

Let p ∈ Z[X ]/(X n − 1). Then

Bsk = {p(x), xp(x), x2p(x), . . . , xn−1p(x)}

In order to decrypt a ciphertext c = (c0, . . . , cn−1),

c mod Bsk = c − Bsk · bB
−1
sk · ce (in Zn)

= c(x)− p(x) · bp(x)−1 · c(x)e (in Z[X ]
X n−1).
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Gentry’s scheme

Homomorphic operations? Ring structure transport from
R = Z[X ]/(P(X )), to Zn via the coefficients homomorphism.

Francisco Vial-Prado Fully Homomorphic Encryption



Generic homomorphic encryption
Gentry’s blueprint
Second generation

The noise problem and Gentrys’ Glovebox

Encryption m + xI is subject to the ’size’ of x . After a threshold,
decryption breaks.

Bootstrapping operation: Homomorphically decrypt
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Second and third generation schemes

Same blueprint

Provide Add, Mult operations, bootstrap to reduce noise,
repeat

Improved efficiency and security

RLWE, NTRU-based, Approximate Eigenvectors

Better noise growth, key sizes, ciphertext compression,
ciphertext packing, SIMD style

Efficient bootstrapping

New flavors, properties, and already practical for applications.
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Learning With Errors

Regev’s folklore example: Recover an integer vector
s = (s1, s2, s3, s4) ∈ Z4

17 satisfying

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 mod 17,
13s1 + 14s2 + 14s3 + 6s4 ≈ 16 mod 17,
6s1 + 10s2 + 13s3 + 1s4 ≈ 3 mod 17,

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 mod 17,
9s1 + 5s2 + 9s3 + 6s4 ≈ 9 mod 17,
3s1 + 6s2 + 4s3 + 5s4 ≈ 16 mod 17,

where “≈” means that the equation is correct up to an error of ±1.

BGV (2011) FHE scheme
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Ring Learning With Errors

Let χ be an error distribution over R = Fq[X ]/(Pn(X )).Let

si (x)← χ and for i = 0, 1, 2, . . . , ai (x)
$←− R, si ← χ. Finally, let

bi := ai · s + ei .

Search-RLWE

Guess s given a list of pairs (ai , bi ) = (ai , ai · s + ei ).

Decision-RLWE

Given a list of pairs (ai (x), bi (x)), decide whether the bi ’s were
sampled randomly, or constructed as above.

BFV (2012) FHE scheme - with new techniques

→ See LatinCrypt’19 - Compact and simple RLWE based key
encapsulation mechanism
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NTRU-based

N-th truncated: Security problems related to Gaussian
distributions and inversions in polynomial rings. Exposed strong
connections with MPC (LTV12 scheme)

Subfield lattice attacks on overstretched NTRU assumptions -
ABD 2016.

→ Same ideas behind the new Mersenne cryptosystem (AJPS17),
see LatinCrypt’19, Quantum LLL with an Application to Mersenne
Number Cryptosystems
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Third Generation

GSW and Approximate Eigenvectors

C · v = m.v + e mod q

Asymmetric nose growth

Bootstrapping after each gate - the homomorphic brick

Ring variant and inspired optimizations: TorusFHE
(https://tfhe.github.io/tfhe/)
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Conclusion

Thank you!
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