
Don’t forget your roots: constant-time
root finding over F2m

Douglas Martins1 Gustavo Banegas2,3

Ricardo Custódio1

1Departamento de Informática e Estatística,
Universidade Federal de Santa Catarina

2Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

3Department of Computer Science and Engineering
Chalmers Tekniska Högskola

October 2
LATINCRYPT 2019



Outline

Introduction
McEliece Cryptosystem

Attack on BIGQUAKE

Root finding methods
Exhaustive search
Linearized polynomials
Berlekamp Trace Algorithm
Successive Resultant Algorithm

Results

Open problems

1 / 18



Introduction

I Traditional algorithms used in cryptography are insecure
against a quantum adversary

I Post-quantum cryptography algorithms aim to provide
security in a quantum era

I NIST standardization process is looking for new
algorithms, and one of the targets are Key Encapsulation
Mechanisms (KEMs)

I Cryptosystems based on coding theory are candidates to
create safe KEMs

2 / 18



McEliece Cryptosystem

I Robert J. McEliece proposed the first cryptosystem based
on coding theory [McE78]

I Until today, most code-based cryptosystems are based on
the same structure

plaintext

ciphertext

codeword

intentionally add errors

encoding

decoding

3 / 18



McEliece Cryptosystem
Key generation and encryption process

I Given a Goppa code Γ(L, g(z)), where g(z) ∈ F2m is the
Goppa polynomial and L = (α1, α2, . . . , αn) the support,
then we can generate a key pair for a McEliece instance
as:

I Public key: pk = G , such that G is a generator matrix
from Γ

I Secret key: sk = (L, g(z))

I Given a message m ∈ Fk
2 , we encrypt this message by

encoding m using the generator matrix G , then we XOR
it with a random error vector e with length n and
Hamming weight t

I Encryption process: c = m × G ⊕ e

4 / 18



McEliece Cryptosystem
Decoding process

I The decoding process was made efficient through
Patterson’s algorithm [Pat75]

I Other decoders could be used for this task, although
some of them require larger key sizes

I The main idea of Patterson’s algorithm is to compute the
syndrome value Sc(z) from a received word c , after that,
it defines the error locator polynomial (ELP), or
σ(x), for c

I The positions of the roots of σ in L define the position
where an error was added

5 / 18



Side-channel attacks

I As shown by [SSMS09] and [BCDR17], timing
side-channel attacks could be done during the
computation and factorization of ELP

I A naive implementation for the factorization of ELP
enables an attacker to recover the plain text

I In [Str12] demonstrates algorithms to find roots efficiently
in code-based cryptosystems

I However, the author shows only timings in different types
of implementations and selects the one that has the least
timing variability

I [BCS13] uses Fast Fourier Transform to achieve a secure
decoding, but is built and optimized for F13

2

6 / 18



Attack on BIGQUAKE
BInary Goppa QUAsi-cyclic Key Encapsulation

I BIGQUAKE is a round 1 submission to NIST
standardization process that uses binary Quasi-cyclic
(QC) Goppa codes in order to accomplish a KEM
between two distinct parties

I The main idea of the algorithm was based on a message
encrypted with a public key. After that, the receiver
decodes the ciphertext, removing the error added to the
message

7 / 18



Attack on BIGQUAKE
BInary Goppa QUAsi-cyclic Key Encapsulation

I As argued, a naive implementation of the decoding step is
vulnerable to side-channel attacks and we use this fact to
perform the attack presented in [SSMS09]

I The attack exploits the fact that flipping a bit of the error
e changes the Hamming weight and per consequence, the
timing for decryption

I Using a precision parameter M = 500, it took ≈ 17
minutes to recover a message m

8 / 18



Root finding methods

I We are interested in constructing a way to compute the
roots of σ without leaking information of which error was
added to the original message

I We present four countermeasures for root finding
methods which are used in code-based cryptosystems

I Exhaustive search
I Linearized polynomials
I Berlekamp Trace Algorithm
I Successive Resultant Algorithm

9 / 18



Exhaustive search

I The exhaustive search is a direct method which makes a
sequential evaluation of all possible values in σ

I Saving one element in a list when a root is found implies
in a extra operation that could be detected in a
side-channel attack

I Our main countermeasure is to permute all elements
before evaluating the root candidate

I Using this technique, an attacker can identify the extra
operation, but cannot learn any secret information

I In our proposal, we employ the Fisher-Yates shuffle

10 / 18



Linearized polynomials

I The second countermeasure proposed is based on the
computation of roots over a class of polynomials called
linearized polynomials

I In [FT02], the authors propose a method for root finding
over a polynomial as `(y) =

∑
i ciy

2i

I In addition, from [TJR01], we have the definition of an
affine polynomial

I A(y) over F2m is an affine polynomial if A(y) = `(y) + β
for β ∈ F2m , where `(y) is a linearized polynomial

11 / 18



Linearized polynomials

I In [FT02], the authors provide a generic decomposition
for finding affine polynomials

f (y) = f3y
3 +

d(t−4)/5e∑
i=0

y 5i(f5i +
3∑

j=0

f5i+2jy
2j )

I We use Gray codes for the generation of the elements in
F2m to find the roots of σ

I We add countermeasures in the algorithm in order to
blind the branches, adding a operation with the same cost
for each branch

12 / 18



Berlekamp Trace Algorithm
I Given a trace function Tr(x) =

∑m−1
i=0 x2

i and a standard
basis β = {β1, . . . βm}, the BTA is described as:

Algorithm 1: BTA(p(x), i) (recursive version)
1 if deg(p(x)) ≤ 1 then
2 return root of p(x)
3 end
4 p0(x)← gcd(p(x),Tr(βi · x))
5 p1(x)← QuoRem(p(x), p0(x))
6 return BTA(p0(x), i + 1) ∪ BTA(p1(x), i + 1)

I The recursive behavior of BTA is the main drawback
against a side-channel attack

I Additionally, trace functions can reach non-divisors of the
current polynomial, making some iterations worthless

13 / 18



Berlekamp Trace Algorithm

I To avoid this time variance, we propose a new iterative
version of BTA

Algorithm 2: BTA(p(x)) (iterative version)
1 g ← {p(x)} // polynomials to be computed
2 for k ← 0 to t do
3 current = g .pop()
4 Compute candidates = gcd(current,Tr(βi · x)) ∀ βi ∈ β
5 Select p0 ∈ candidates such that p0.degree ' current

2
6 p1(x)← QuoRem(current, p0(x))
7 if p0.degree == 1 then R .add(root of p0)
8 else g .add(p0)
9 if p1.degree == 1 then R .add(root of p1)

10 else g .add(p1)

11 end
12 return R

14 / 18



Successive Resultant Algorithm

I Proposed in [Pet14] and generalized in [DPP16], the SRA
relies on the fact that it is possible to find roots exploiting
properties of an ordered set of rational mappings

I The main idea of the algorithm is to construct a
polynomial system such that

f (x1) = 0
xpj − ajxj = xj+1, j = 1, . . . , n − 1
xpn − anxn = 0

(1)

15 / 18



Successive Resultant Algorithm

I From [Pet14], if (x1, x2, . . . , xm) is a solution for
Equation 1, then x1 ∈ Fpm is a root of f

I Conversely, given a solution x1 ∈ Fpm of f , we can
reconstruct a solution of all equations in Equation 1 by
setting x2 = xp1 − a1x1 etc.

I In [Pet14], the authors present an algorithm for solving
the system in Equation 1 using resultants

I It is worth remarking that this algorithm is almost
constant-time and hence we just need to protect the
branches presented on it

16 / 18



Results

5.24 · 109 5.28 · 109 5.32 · 109 5.36 · 109
Ours
SCA

6.38 · 108 6.4 · 108 6.42 · 108 6.44 · 108 6.46 · 108
Ours
Lin.

7.6 · 108 8 · 108 8.4 · 108 8.8 · 108 9.2 · 108
Ours
BTA

Figure: Comparison of CPU cycles of original implementation and
our proposal for Linearized, Successive resultant algorithm and
Berlekamp trace algorithm with t = 100.

17 / 18



Open problems

I Improve our implementation using vectorization, bit
slicing or Intel R© IPP Cryptography instructions for finite
fields

I Improve security analysis by removing conditional memory
access

I Consider different attack scenarios and perform an
analysis of hardware side-channel attacks

I Analysis of different methods to compute roots, and
check their security against side-channel attacks

18 / 18



Thank you for the attention!

marcelino.douglas@posgrad.ufsc.br



References I

Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Drağoi, and Tania Richmond.
Improved timing attacks against the secret permutation in the McEliece PKC.
International Journal of Computers Communications & Control, 12(1):7–25,
2017.

Daniel J Bernstein, Tung Chou, and Peter Schwabe.
McBits: fast constant-time code-based cryptography.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 250–272. Springer, 2013.

James H. Davenport, Christophe Petit, and Benjamin Pring.
A Generalised Successive Resultants Algorithm.
In Sylvain Duquesne and Svetla Petkova-Nikova, editors, Arithmetic of Finite
Fields, pages 105–124, Cham, 2016. Springer International Publishing.

Sergei V Fedorenko and Peter V Trifonov.
Finding roots of polynomials over finite fields.
IEEE Transactions on communications, 50(11):1709–1711, 2002.

Robert J McEliece.
A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, January 1978.



References II

Nicholas Patterson.
The algebraic decoding of Goppa codes.
IEEE Transactions on Information Theory, 21(2):203–207, 1975.

Christophe Petit.
Finding roots in GF(pn) with the successive resultant algorithm.
IACR Cryptology ePrint Archive, 2014:506, 2014.

Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger.
A timing attack against patterson algorithm in the McEliece PKC.
In Information, Security and Cryptology - ICISC 2009, 12th International
Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers, pages
161–175, 2009.

Falko Strenzke.
Fast and secure root finding for code-based cryptosystems.
In Cryptology and Network Security, 11th International Conference, CANS 2012,
Darmstadt, Germany, December 12-14, 2012. Proceedings, pages 232–246, 2012.

T-K Truong, J-H Jeng, and Irving S Reed.
Fast algorithm for computing the roots of error locator polynomials up to degree
11 in Reed-Solomon decoders.
IEEE Transactions on Communications, 49(5):779–783, 2001.


	Introduction
	McEliece Cryptosystem

	Attack on BIGQUAKE
	Root finding methods
	Exhaustive search
	Linearized polynomials
	Berlekamp Trace Algorithm
	Successive Resultant Algorithm

	Results
	Open problems

